
feature

80	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

For three decades, researchers have made consid-
erable effort and obtained sufficient results regard-
ing mutation. However, neither software practition-
ers nor testing-tool developers have put the results
to work. Here, we describe research on cost reduc-
tion in mutation testing, focusing on techniques
that could easily transfer to industrial practice.

Preliminary concepts
Richard DeMillo and his colleagues proposed mu-
tation as a testing technique in 1978.1 They de-
scribe this basic idea as follows:

A programmer enters from a terminal a pro-
gram, P, and a proposed test data set whose
adequacy is to be determined. The mutation
system first executes the program on the test
data: if the program gives incorrect answers
then certainly the program is in error. On
the other hand, if the program gives correct
answers, then it may be that the program is
still in error, but the test data is not sensi-
tive enough to distinguish that error: it is not
adequate. The mutation system then creates a
number of mutations of P that differ from P
only in the occurrence of simple errors.1

So, a mutant M of a program under test P is a copy
of P that contains a small code change that’s inter-
preted as a fault. Mutation relies on the ability of
the test data set (the test suite) to find faults in the
set of mutants.

Test engineers typically use automated tools to
generate mutants. These tools apply a set of muta-
tion operators to P. They define each mutation op-
erator to introduce some type of syntactic change
to a statement. For example, a simple instruction
such as return a + b (where a and b are integers) can
mutate in at least 20 different ways (a − b, a × b, a
/ b, a + b++, −a + b, a + − b, 0 + b, a + 0, |a| + b,
a + |b|, and so on), depending on the mutation op-
erators. Thus, the number of mutants generated
even for a medium-size program can be very large.
Dealing with this number of mutants has implica-
tions regarding the time needed to compile, link,
and execute them.

Automated tools typically execute test cases
against the original program and the mutants,
registering the results with each program version
(original or mutant). When the result of execut-
ing a test case against a mutant M differs from the
same test case against P, the test case has found
the fault introduced in M, and the mutant is killed;

F rom the research perspective, mutation is a mature testing technique that has
often shown its value for evaluating both software and software testing tech-
niques. However, to the best of our knowledge, there’s an important gap be-
tween its current research status and the possibilities of adopting it for the indus-

trial world, owing to its high costs.

Although mutation’s
main steps (mutant
generation, test
case execution, and
result analysis) can
be costly, research
allows developers to
apply it to industry.

Macario Polo Usaola and Pedro Reales Mateo, University of Castilla-La Mancha

Mutation Testing Cost
Reduction Techniques:
A Survey

t e s t ing

	 May/June 2010 I E E E S O F T W A R E 	 81

otherwise, the mutant is alive. Thus, the mutation
testing aims “to kill all the mutants.” An oracle
compares states of the mutant and the original pro-
gram after executing each test case. Here, the main
problem is the number of executions required to
execute all the test cases against all the mutants,
which, in principle, should be |T| × |M|, where T is
the set of test cases and M is the set of mutants (you
must also consider |T| additional executions for the
original program).

Many mutants that remain alive will never be
killed because they’re equivalent mutants and will
always produce the same output as P for any test
case. Actually, the “fault” introduced in equiva-
lent mutants isn’t a fault but an optimization or
deoptimization of the code (for example, the Java
instructions return a and return a++ provide the same
result). Equivalent mutants are really noise and
make the third step of mutation testing difficult—
analyzing test case execution results. Taking into
account the set of equivalent mutants, Equation 1
gives the quality of a test suite (measured in terms
of the number of mutants killed) and defines the
mutation score:

MS P T
K

M E
(,)

()
=

−
, (1)

where P is the program under test; T is the test
suite; K is the number of mutants killed; M is the
number of mutants generated; and E is the number
of equivalent mutants.

So, mutation testing’s main difficulties come
from the number of mutants the operators gener-
ate, the number of required executions, and the
result analysis step, which is hampered by the
equivalent mutants introduced, usually around
20 percent. These difficulties, together with the
“strange” nature of mutation (discovery of artifi-
cially seeded faults), mean that this testing tech-
nique hasn’t received much attention from the
industrial community, which is more interested
in detecting real faults in the actual application.
Some studies have discussed how discovering all
the faults seeded by mutation operators might
subsume (see the “Subsumption of Coverage Cri-
teria” sidebar),2 probably subsume,3 or corre-
spond to several widely accepted coverage criteria
(such as decision, condition, condition/decision,
and modified decision/condition). From here, you
can consider the mutation score as an adequate-
coverage criterion if good mutation operators are
applied.4 Indeed, killing a set of mutants gener-
ated with a good set of operators helps to fulfill
two goals. The first is to have a good test suite, T
(if T discovers all the artificial faults). The second

is to have a reliable original program P, if T finds
no faults in P.

Mutation Testing
Figure 1 shows a testing process that slightly mod-
ifies the one that A. Jefferson Offutt proposed.5

Figure 1. A modified version of mutation testing where T is the test
suite, P is the program under test, and TC is a test case. The tester
checks the correct behavior of the original program before generating
mutants.

Run
T on P P(T) correct?

Fix P

Create
mutants

Run T on
each alive

mutant

Eliminate
ineffective

TCs

T

F

Threshold
reached?

T

Add new
test cases

to T

F

Are there valid
mutants?

T

F

Remove
equivalent
mutants

Input test
program

De�ne
threshold

Test suite
(T)

A criterion coverage C1 subsumes another criterion C2 if for every program,
any test set T that satisfies C1 also satisfies C2.1 Three examples of such sub-
sumption follow. Exercising all statements in a class subsumes all methods. If a
test suite traverses all the edges in a connected graph, all its nodes are also
traversed. So, all-edges subsumes all-nodes. The decision coverage criterion requires
that each decision execute at least once. The logical connector replacement mutation
operator replaces each decision in a program by true and false. To kill them,
test cases respectively taking the false and the true branches must be written
to cover decisions.2

References
 1. P.G. Frankl and E.J. Weyuker, “An Applicable Family of Data Flow Testing Criteria,” IEEE

Trans. Software Eng., vol. 14, no. 10, 1998, pp. 1483–1498.
 2. A.J. Offutt and J.M. Voas, Subsumption of Condition Coverage Techniques by Mutation

Testing, tech. report ISSE-TR-96-01, Dept. of Information and Software Systems Eng., George
Mason Univ., 1996.

Subsumption of Coverage Criteria

82	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Offutt’s process proposes generating mutants and
iteratively executing the test cases against the liv-
ing ones. As long as the process doesn’t reach a
minimal, preestablished mutation score threshold,
the tester must add new test cases to the suite until
he or she finds the desired number of introduced
faults. Then, the tester compares the results of ex-
ecuting the test cases against the original program
with the expected results. If any are incorrect, the
developers must fix the original program and re-
start the process. So, it’s possible to detect errors
in the original program after having achieved
the desired mutation score, which may require a
new execution of all the steps. Once the original
program has changed, some or all of the first-
generation mutants are no longer valid, so the tes-so the tes-
ter (perhaps using a tool) must create and execute
new test cases. Then the tester, assisted by the mu-
tation tool, should analyze the results again.

To mitigate this possibility, the tester should
first execute the test cases against the input pro-
gram to find any faults as soon as possible. In the
refined process in Figure 1, the tester evaluates the
correction of the input program for the initial test
suite. It’s obviously important to write a good set
of test cases that provide as much coverage as pos-
sible. To this end, the literature includes a broad
set of test data selection techniques and combina-
tion strategies to produce good test suites.6–7 (For
additional resources, tools, and so on, see Muta-
tion Testing Online; www.mutationtest.net.)

Once the tester has a process model to follow,
the next point of interest is reducing costs in the
“create mutants,” “run T on each alive mutant,”
and “threshold reached” boxes of the figure.
Eliminating ineffective test cases can occur dur-
ing test case execution or after, by applying a test-
suite-reduction algorithm based on mutation.

Mutant Generation
When mutants are generated, several operators
can mutate almost every executable instruction in
the original program, meaning that the number of
mutants generated for a normal program can be
huge. Depending on the system, this can result in
high costs for compilation and further steps. To
reduce such costs, the tester can select either ran-the tester can select either ran-can select either ran-
dom mutants or the best mutation operators (se-
lective mutation).

Regarding random selection, research has shown
that a 100 percent mutation score for 10 percent of
the mutants is nearly adequate for a full mutation
analysis.8–11 However, such selection requires gen-
erating, compiling, and linking all the mutants.

Researchers have concentrated on selective

mutation, which consists of generating mutants
using only a reduced subset of mutation opera-
tors. The criterion for selecting the operators
lies in the “goodness” of the mutants generated.
Elfurjani S. Mresa and Leonardo �ottaci con-�ottaci con-
ducted an empirical study to determine the best
operators and when it’s preferable to use random
selection.6 They observed, for example, that SVR
(scalar variable replacement), ASR (array refer-
ence for scalar variable replacement), and CSR
(constant for scalar variable replacement) opera-alar variable replacement) opera-opera-
tors generate the most mutants (confi rming a pre- generate the most mutants (confirming a pre-
vious analysis12) and that these operators perhaps
shouldn’t be included in a selective set. Mresa and
�ottaci classify the mutation operators in several
categories. They reached two main conclusions.

 ■ If the program under test requires a muta-
tion score very close to 100 percent, then ran-
dom selection is more efficient than selective
mutation.

 ■ If less stringent test coverage is acceptable,
then selective mutation based on a restricted
set of efficient operators—AOR (arithmetic
operator replacement), SAN (statement analy-
sis), SDL (statement deletion), ROR (relational
operator replacement), and UOI (unary opera-
tion insertion)—is more efficient.

In a previous study, Offutt and his colleagues
concluded that test sets that are adequate for the
mutants generated by AOR, ROR, UOI, A�S (ab-AOR, ROR, UOI, A�S (ab-
solute value insertion), and LCR (logical connector
replacement) achieve a full mutation score of 99
percent, reducing the number of mutants generated
by 77 percent.13

The suitability of mutation operators for test-
ing a program might depend on its programming
language. The selected operators apply to almost
any programming language; however, they don’t
consider, for example, the manipulation of point-
ers in languages such as C or C++ or the character-
istics of object orientation, such as inheritance and
polymorphism. In this respect, James Andrews
and his colleagues conducted an experiment on
C programs by applying Offutt’s selected opera-
tors and adding SDL because the subject programs
“contained a large number of pointer-manipula-
tion and field-assignment statements that would
not be vulnerable to any of the sufficient mutation
operators.”14

Mutation operators try to imitate common
errors that programmers commit (such as using
a null pointer or not overriding an inherited op-
eration) and rely on the coupling effect, in which

100 percent
mutation score
for 10 percent
of the mutants

is nearly
adequate for

a full mutation
analysis.

	 May/June 2010 I E E E S O F T W A R E 	 83

a test data set that detects all simple faults in a
program is so sensitive that it also detects more
complex faults.15–16 One criticism of mutation
testing is the artificial nature of the faults seeded.
Andrews and his colleagues reached two impor-
tant conclusions. First, using selectively generated
mutants (from which the equivalent mutants must
be removed) can indicate a test suite’s fault detec-
tion ability. Second, their experiment “shows the
danger of using faults selected by humans, since it
leads to underestimating the fault detection abil-
ity of test suites.” Thus, they also note the con-
venience of automatic mutant generation, which
provides a well-defined, fault-seeding process
and the possibilities of replication and criteria
subsumption.14

In a study regarding sufficient mutation oper-
ators for C, Ellen F. �arbosa and her colleagues
selected from the mutation operators in the Pro-
teum tool this set of operators: SWDD (while re-
placement by do-while), SMTC (n-trip continue),
SSDL (statement deletion), OL�N (logical opera-
tor by bitwise operator), OASN (arithmetic op-
erator by shift operator), ORRN (relational op-
erator mutation), VTWD (twiddle mutations),
VDTR (domain traps), Cccr (constant for con-
stant replacement) and Ccsr (constant for scalar
replacement).17

In addition, Yu-Seung Ma and her colleagues
have developed MuJava, a Java mutation testing
tool that uses mutant schemata generation to di-
rectly manipulate Java bytecode, thus saving time
in mutant compilation.18

Test Case Generation
and Execution
Having a reduced-size test suite is important, es-
pecially for regression testing during software
maintenance. Mats Grindal and his colleagues
reviewed strategies for test case generation, each
with its advantages and drawbacks: Each choice,
for example, produces small test suites but pro-
vides low coverage. All combinations provides
the highest coverage but produces the largest test
suites. Moreover, many of those cases are redun-
dant, because they don’t increase the coverage
reached by other test cases in the same suite.7

Regarding test case execution, the most com-
mon way to eliminate the ineffective test cases
(see the box in Figure 1) is to execute each test
case only against the mutants that remain alive.
So, after the execution, the tester obtains a re-
duced test suite that reaches the same mutation
score as the whole test suite. Consider, for exam-
ple, Table 1, which shows a program with seven

mutants and a test suite with six test cases. At
first glance, the complete execution requires 6 ×
7 = 42 executions (setting aside the six executions
in the original program). If test cases execute only
against those mutants that remain alive, then
the number of executions might decrease signifi-
cantly: tc1 kills m1 and m2, which are removed
from the mutant suite (there are seven executions
at this point). Then, tc2 executes against m3 to
m7 (five executions), and m3 is removed from
the mutant suite because it’s killed. Then, tc3 ex-
ecutes on m4 to m7, removing m4, m5, and m6
from the mutant set. In this example, tc4 and tc5
execute with no positive results against the only
live mutant (m7). Finally, one more execution of
tc6 kills m7. In this way, only 19 test case execu-
tions are required instead of 42, and the test suite
can be reduced to four test cases.

Another possibility is reducing the suite after
all test cases execute. Although the problem of
minimizing a test suite (the “optimal test-suite
reduction problem”) has been shown to be NP-
hard19 (and thus has no solution in polynomial
time), several approaches present greedy algo-
rithms for its solution (along with several au-
thors, Neelam Gupta has worked intensively
in this area20). These approaches require com-
plete execution of all test cases against all the
mutants: in Table 1, tc1 and tc6 reach the same
mutation score as the complete test suite. If the
test case selection occurs during mutant execu-
tion (as in the example given in the previous
paragraph, where four test cases were selected),
the reduced suite can be farther from the min-
imum size obtained by a greedy algorithm (as
in this example, where only two test cases are
selected). Since testing is often programmed as

Table 1
A killing matrix for a supposed program

Each X represents that the tci test case has killed the mj mutant

Mutant tc1 tc2 tc3 tc4 tc5 tc6

m1 X X

m2 X X X

m3 X X

m4 X X

m5 X X

m6 X X

m7 X

84	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

unattended, nightly batch processes, the com-
plete execution and further application of a
greedy algorithm is a good choice for approach-
ing the optimal reduced suites, which can be an
important benefit in regression testing.

Another promising approach in test case ex-
ecution is weak mutation, 21–23 which requires
the continuous observation of the mutant being
executed to check its intermediate state changes
with respect to the original program. Classic mu-
tation (also called strong mutation) considers a
test case that kills a mutant when the test case
output differs after executing it on the original
and the mutant. More formally, this requires
three conditions: reachability (the mutated state-
ment must be reached), necessity (once the state-
ment has been reached, the test case must cause
an erroneous state on the mutant), and suffi-
ciency (the erroneous state must be propagated
to the output). Weak mutation only requires the
two first conditions to detect the change intro-
duced in the mutant, considering it’s killed just
when the different state is detected.

Result Analysis
The most important obstacle in this third step is
the presence of equivalent mutants. Phyllis Frankl
and her colleagues discuss the almost prohibitive
cost of detecting equivalent mutants.24 �ernhard
Grün and his colleagues report of a duration of
15 minutes to assess the equivalence of a single
mutation.25

From a formal point-of-view, the problem
with detecting all equivalent mutants is undecid-
able, although in practice you can detect some by
annotating the program under test with restric-
tions26 and program slicing.27 However, the in-
dustry doesn’t usually apply these techniques, so
they aren’t easily adaptable to common software
development practice.

Many selective-mutation concepts aim to re-
duce the number of equivalent mutants, which
implies a considerable reduction during result
analysis. From the automatable-techniques per-
spective, a recent paper discusses perhaps the
most significant results and relies on n-order mu-
tation.28 An n-order mutant contains n faults
instead of 1 and proceeds from a previous gen-
eration’s combination of mutants. Thus, two
first-order mutants (each with a fault) are com-
bined into a second-order mutant with two faults,
which might in turn be combined with another
first-order mutant to obtain a third-order mutant.

The paper describes three algorithms for pro-
ducing second-order mutants from first-order

mutants and shows meaningful cost reductions
in mutation testing, especially during result anal-
ysis. At first glance, the number of second-order
mutants corresponding to a set of first-order
mutants is one-half (although seach algorithm
produces different quantities of second-order
mutants). In general, there will be 1/n n-order
mutants. The number of test case executions also
decreases (against 1/n instead of against n mu-
tants). Perhaps more important, the percentage
of equivalent mutants significantly decreases be-
cause with about 20 percent of fi rst-order equiva-first-order equiva--order equiva-
lent mutants, the probability of combining two
equivalent mutants to produce a new one de-
creases to 4 percent. Obviously, the counterpart
is the possibility of killing all the n-order mutants
with test cases that only discover one of the n
seeded faults. The authors of the paper include an
experimental study with benchmark programs
and some pieces of industrial software, conclud-
ing that, as long as the tester is aware of this risk,
even sixth-order mutation can be effective.28

A n industrially applicable mutation-test-
ing tool should have these requirements:

 ■ Users should be able to generate mutants with
a selective set of generally applicable mutation
operators, most likely AOR, ROR, UOI, A�S,
and LCR. Additionally, and for specific lan-
guages or environments, the tool should con-
sider including other concrete operators.

 ■ Users should be able to select a random set of
mutants.

 ■ Also depending on the specific environment,
the tool should allow mutation at compiled-
code level (bytecode for Java, Microsoft Inter-
mediate Language for .NET, and so on).

 ■ In test execution, the tool should support
both executing test cases on only the mutants
remaining alive and, regarding batch, unat-
tended testing cycles, selecting a reduced test
suite with, for example, a greedy algorithm.

 ■ The tool should support instrumentation of
both the original program and the mutants to
keep a log of the execution. Changes in a log
would highlight a behavior difference, mean-
ing that the corresponding mutant has been
killed, and making this technique a type of
weak mutation.

 ■ To reduce result analysis costs, the tool should
allow n-order mutation, which is easily auto-
matable and transferable to industry.

Combining
these

techniques
means a cost
savings that

could surpass
75 percent

of the original
costs.

	 May/June 2010 I E E E S O F T W A R E 	 85

Data from some experiments shows that a
mean of 18.66 percent of the mutants generated
are equivalent.28 Taking the triangle-type prob-
lem as a possible baseline (a small program which
many researchers have used for testing experi-
ments), the MuJava tool generated 309 mutants
(70 of them equivalent, 22.65 percent):

 ■ Applying selective mutation could reduce the
number of mutants by three-fourths—78 mu-
tants. As we’ve discussed, there’s significant
confidence that a test suite killing these 78
mutants would also kill the original 309.

 ■ Supposing a uniform distribution of equiva-
lent mutants per operator (which actually
isn’t true, because each operator has a differ-
ent proneness to produce this kind of noise),
the process would generate 16 equivalent
mutants.

 ■ Combining the 78 selected mutants with a
good combination algorithm (DifferentOper-
ators is the best of the three presented) would
produce between 50 and 55 percent second-
order mutants (39 to 43), with about 5 per-
cent (2) of equivalent mutants.

Combining these techniques means a cost sav-
ings that could surpass 75 percent of the origi-
nal costs (important savings, for example, for the
case of Grün, who reported 40 percent of equiv-
alent mutants in an industrial project25). Addi-
tionally, this type of tool could even reduce the
cost of test case execution via code instrumen-
tation for supporting weak mutation (because
it wouldn’t require executing each test case un-
til its termination). Currently, we’re developing
�acterio, a tool with many of these characteris-
tics. To view �acterio, along with the experimen-
tal material cited in this section, visit http://alar-
cos.esi.uclm.es/testing.

Acknowledgments
The PRALÍN (Pruebas en Líneas de Producto,
Junta de Comunidades de Castilla-La Mancha/
European Social Fund, grant PAC08-121-1374) and
the PEGASO/MAGO (Ministerio de Ciencia Inno-
vación, grant TIN2009-13718-C02-01) projects par-
tially supported this work.

References
 1. R. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on

Test Data Selection: Help for the Practicing Program-
mer,” IEEE Computer, vol. 11, no. 4, 1978, pp. 34–41.

 2. A.J. Offutt and J.M. Voas, Subsumption of Condition
Coverage Techniques by Mutation Testing, tech. report

ISSE-TR-96-01, Dept. of Information and Software
Systems Eng., George Mason Univ., 1996.

 3. A.J. Offutt et al., “An Experimental Evaluation of Data
Flow and Mutation Testing,” Software: Practice and
Experience, vol. 26, no. 2, 1996, pp. 165–176.

 4. M. Polo, M. Piattini, and S. Tendero, “Integrating
Techniques and Tools for Testing Automation,” Soft-
ware Testing, Verification and Reliability, vol. 17, no.
1, 2007, pp. 3–39.

 5. A.J. Offutt, “A Practical System for Mutation Testing:
Help for the Common Programmer,” Proc. 12th Int’l
Conf. Testing Computer Software (ICST 95), IEEE CS
Press, 1995, pp. 99–109.

 6. E.S. Mresa and L. �ottaci, “Efficiency of Mutation Op-
erators and Selective Mutation Strategies: An Empirical
Study,” Software Testing, Verification and Reliability,
vol. 9, no. 4, 1999, pp. 205–232.

 7. M. Grindal, A.J. Offutt, and S.F. Andler, “Combina-
tion Testing Strategies: A Survey,” Software Testing,
Verification and Reliability, vol. 15, no. 3, 2005, pp.
167–199.

 8. R.A. DeMillo and E.H. Spafford, “The Mothra Soft-
ware Testing Environment,” Proc. 11th NASA Software
Eng. Laboratory Workshop, Goddard Space Center,
1986.

 9. A.T. Acree, “On Mutation,” doctoral dissertation,
School of Information and Computer Science, Georgia
Inst. of Technology, 1980.

 10. R.A. DeMillo et al., “An Extended Overview of the
Mothra Software Testing Environment,” Proc. 2nd
Workshop Software Testing, Verification, and Analysis,
IEEE CS Press, 1988, pp. 142–151.

 11. K.N. King and A.J. Offutt, “A Fortran Language Sys-
tem for Mutation-�ased Software Testing,” Software:
Practice and Experience, vol. 21, no. 7, 1991, pp.
685–718.

 12. A.P. Mathur, “Performance, Effectiveness, and Reliabil-
ity Issues in Software Testing,” Proc. 15th Ann. Int’l
Computer Software and Applications Conf., IEEE CS
Press, 1991, pp. 604–605.

 13. A.J. Offutt et al., “An Experimental Determination of
Sufficient Mutant Operators,” ACM Trans. Software
Eng. and Methodology, vol. 5, no. 2, 1996, pp. 99–118.

 14. J. Andrews, L. �riand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments?” Proc. 2005

About the Authors
Macario Polo Usaola is a professor of computer science in the Department of
Information Systems and Technologies at the University of Castilla-La Mancha. He’s also an
active member of the Alarcos Research Group. His research interests relate to the automa-
tion of software testing tasks. Polo has a PhD in computer science from the University of
Castilla-La Mancha. Contact him at macario.polo@uclm.es.

Pedro Reales Mateo is a PhD student of computer science in the University of
Castilla-La Mancha’s Department of Information Systems and Technologies. His research
interests relate to the automation of software testing. Reales has an MSc in computer science
from the University of Castilla-La Mancha. Contact him at pedro.reales@uclm.es.

86	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Int’l Conf. Software Eng. (ICSE 05), ACM Press, 2005,
pp. 402–411.

 15. R. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Program-
mer,” IEEE Computer, vol. 11, no. 4, 1978, pp. 34–41.

 16. A.J. Offut, “Investigations of the Software Testing
Coupling Effect,” ACM Trans. Software Eng. and
Methodology, vol. 1, no. 1, 1992, pp. 15–20.

 17. E.F. �arbosa et al., “Toward the Determination of
Sufficient Mutant Operators for C,” Software Testing,
Verification and Reliability, vol. 11, no. 2, 2001, pp.
113–136.

 18. Y.-S. Ma, “MuJava: An Automated Class Mutation
System,” Software Testing, Verification and Reliability,
vol. 15, no. 2, 2005, pp. 97–133.

 19. M.R. Garey and D.S. Johnson, Computers and Intrac-
tability, W.H. Freeman, 1979.

 20. D. Jeffrey and N. Gupta, “Test Suite Reduction with
Selective Redundancy,” Proc. 21st Int’l Conf. Software
Maintenance (ICSM 05), IEEE CS Press, 2005, pp.
549–558.

 21. R. DeMillo, E. Krauser, and A. Mathur, “Compiler-
Integrated Program Mutation,” Proc. 15th Ann.
Computer Software and Applications Conf. (Compsac
91), pp. 351–356. 1991.

 22. W.E. Howden, “Weak Mutation Testing and Complete-
ness of Test Sets,” IEEE Trans. Software Eng., vol. 8,
no. 4, 1982, pp. 371–379.

 23. A.J. Offutt and S.D. Lee, “An Empirical Evaluation of
Weak Mutation,” IEEE Trans. Software Eng., vol. 20,
no. 5, 1994, pp. 337–344.

 24. P.G. Frankl, S.N. Weiss, and C. Hu, “All-Uses versus
Mutation Testing: An Experimental Comparison of
Effectiveness,” J. Systems and Software, vol. 38, no. 3,
2007, pp. 235–253.

 25. �.J.M. Grün, D. Schuler, and A. Zeller, “The Impact of
Equivalent Mutants,” Proc. IEEE Int’l Conf. Software
Testing, Verification, and Validation Workshops (ICST
09), IEEE CS Press, 2009, pp. 192–199.

 26. A.J. Offutt and J. Pan, “Automatically Detecting
Equivalent Mutants and Infeasible Paths,” Software
Testing, Verification and Reliability, vol. 7, no. 3, 1997,
pp. 165–192.

 27. R. Hierons and M. Harman, “Using Program Slicing to
Assist in the Detection of Equivalent Mutants,” Soft-
ware Testing, Verification and Reliability, vol. 9, no. 4,
1999, pp. 233–262.

 28. M. Polo, M. Piattini, and I. García-Rodríguez, “De-
creasing the Cost of Mutation Testing with Second-
Order Mutants,” Software Testing, Verification and
Reliability, vol. 19, no. 2, 2008, pp. 111–131.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

The IEEE Computer Society Career
Center is the best niche employment
source for computer science and
engineering jobs, with hundreds of
jobs viewed by thousands of the
finest scientists each month - in
Computer magazine and/or online!

> Software Engineer

> Member of Technical Staff

> Computer Scientist

> Dean/Professor/Instructor

> Postdoctoral Researcher

> Design Engineer

> Consultant

http://careers.computer.org

Running in Circles Looking for a
Great Computer Job or Hire?

The IEEE Computer Society Career Center is part of the
Physics Today Career Network, a niche job board network
for the physical sciences and engineering disciplines. Jobs
and resumes are shared with four partner job boards -
Physics Today Jobs and the American Association of Physics
Teachers (AAPT), American Physical Society (APS), and
AVS: Science and Technology of Materials, Interfaces, and
Processing Career Centers.

