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For three decades, researchers have made consid-
erable effort and obtained sufficient results regard-
ing mutation. However, neither software practition-
ers nor testing-tool developers have put the results 
to work. Here, we describe research on cost reduc-
tion in mutation testing, focusing on techniques 
that could easily transfer to industrial practice. 

Preliminary concepts 
Richard DeMillo and his colleagues proposed mu-
tation as a testing technique in 1978.1 They de-
scribe this basic idea as follows: 

A programmer enters from a terminal a pro-
gram, P, and a proposed test data set whose 
adequacy is to be determined. The mutation 
system first executes the program on the test 
data: if the program gives incorrect answers 
then certainly the program is in error. On 
the other hand, if the program gives correct 
answers, then it may be that the program is 
still in error, but the test data is not sensi-
tive enough to distinguish that error: it is not 
adequate. The mutation system then creates a 
number of mutations of P that differ from P 
only in the occurrence of simple errors.1

So, a mutant M of a program under test P is a copy 
of P that contains a small code change that’s inter-
preted as a fault. Mutation relies on the ability of 
the test data set (the test suite) to find faults in the 
set of mutants.

Test engineers typically use automated tools to 
generate mutants. These tools apply a set of muta-
tion operators to P. They define each mutation op-
erator to introduce some type of syntactic change 
to a statement. For example, a simple instruction 
such as return a + b (where a and b are integers) can 
mutate in at least 20 different ways (a − b, a × b, a 
/ b, a + b++,  −a + b, a +  − b, 0 + b, a + 0, |a| + b, 
a + |b|, and so on), depending on the mutation op-
erators. Thus, the number of mutants generated 
even for a medium-size program can be very large. 
Dealing with this number of mutants has implica-
tions regarding the time needed to compile, link, 
and execute them.

Automated tools typically execute test cases 
against the original program and the mutants, 
registering the results with each program version 
(original or mutant). When the result of execut-
ing a test case against a mutant M differs from the 
same test case against P, the test case has found 
the fault introduced in M, and the mutant is killed; 
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otherwise, the mutant is alive. Thus, the mutation 
testing aims “to kill all the mutants.” An oracle 
compares states of the mutant and the original pro-
gram after executing each test case. Here, the main 
problem is the number of executions required to 
execute all the test cases against all the mutants, 
which, in principle, should be |T| × |M|, where T is 
the set of test cases and M is the set of mutants (you 
must also consider |T| additional executions for the 
original program).

Many mutants that remain alive will never be 
killed because they’re equivalent mutants and will 
always produce the same output as P for any test 
case. Actually, the “fault” introduced in equiva-
lent mutants isn’t a fault but an optimization or 
deoptimization of the code (for example, the Java 
instructions return a and return a++ provide the same 
result). Equivalent mutants are really noise and 
make the third step of mutation testing difficult—
analyzing test case execution results. Taking into 
account the set of equivalent mutants, Equation 1 
gives the quality of a test suite (measured in terms 
of the number of mutants killed) and defines the 
mutation score: 
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where P is the program under test; T is the test 
suite; K is the number of mutants killed; M is the 
number of mutants generated; and E is the number 
of equivalent mutants.

So, mutation testing’s main difficulties come 
from the number of mutants the operators gener-
ate, the number of required executions, and the 
result analysis step, which is hampered by the 
equivalent mutants introduced, usually around 
20 percent. These difficulties, together with the 
“strange” nature of mutation (discovery of artifi-
cially seeded faults), mean that this testing tech-
nique hasn’t received much attention from the 
industrial community, which is more interested 
in detecting real faults in the actual application. 
Some studies have discussed how discovering all 
the faults seeded by mutation operators might 
subsume (see the “Subsumption of Coverage Cri-
teria” sidebar),2 probably subsume,3 or corre-
spond to several widely accepted coverage criteria 
(such as decision, condition, condition/decision, 
and modified decision/condition). From here, you 
can consider the mutation score as an adequate-
coverage criterion if good mutation operators are 
applied.4 Indeed, killing a set of mutants gener-
ated with a good set of operators helps to fulfill 
two goals. The first is to have a good test suite, T 
(if T discovers all the artificial faults). The second 

is to have a reliable original program P, if T finds 
no faults in P.

Mutation Testing 
Figure 1 shows a testing process that slightly mod-
ifies the one that A. Jefferson Offutt proposed.5 

Figure 1. A modified version of mutation testing where T is the test 
suite, P is the program under test, and TC is a test case. The tester 
checks the correct behavior of the original program before generating 
mutants. 
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A criterion coverage C1 subsumes another criterion C2 if for every program, 
any test set T that satisfies C1 also satisfies C2.1 Three examples of such sub-
sumption follow. Exercising all statements in a class subsumes all methods. If a 
test suite traverses all the edges in a connected graph, all its nodes are also 
traversed. So, all-edges subsumes all-nodes. The decision coverage criterion requires 
that each decision execute at least once. The logical connector replacement mutation 
operator replaces each decision in a program by true and false. To kill them, 
test cases respectively taking the false and the true branches must be written 
to cover decisions.2 
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Offutt’s process proposes generating mutants and 
iteratively executing the test cases against the liv-
ing ones. As long as the process doesn’t reach a 
minimal, preestablished mutation score threshold, 
the tester must add new test cases to the suite until 
he or she finds the desired number of introduced 
faults. Then, the tester compares the results of ex-
ecuting the test cases against the original program 
with the expected results. If any are incorrect, the 
developers must fix the original program and re-
start the process. So, it’s possible to detect errors 
in the original program after having achieved 
the desired mutation score, which may require a 
new execution of all the steps. Once the original 
program has changed, some or all of the first- 
generation mutants are no longer valid, so the tes-so the tes-
ter (perhaps using a tool) must create and execute 
new test cases. Then the tester, assisted by the mu-
tation tool, should analyze the results again.

To mitigate this possibility, the tester should 
first execute the test cases against the input pro-
gram to find any faults as soon as possible. In the 
refined process in Figure 1, the tester evaluates the 
correction of the input program for the initial test 
suite. It’s obviously important to write a good set 
of test cases that provide as much coverage as pos-
sible. To this end, the literature includes a broad 
set of test data selection techniques and combina-
tion strategies to produce good test suites.6–7 (For 
additional resources, tools, and so on, see Muta-
tion Testing Online; www.mutationtest.net.)

Once the tester has a process model to follow, 
the next point of interest is reducing costs in the 
“create mutants,” “run T on each alive mutant,” 
and “threshold reached” boxes of the figure. 
Eliminating ineffective test cases can occur dur-
ing test case execution or after, by applying a test-
suite-reduction algorithm based on mutation.

Mutant Generation 
When mutants are generated, several operators 
can mutate almost every executable instruction in 
the original program, meaning that the number of 
mutants generated for a normal program can be 
huge. Depending on the system, this can result in 
high costs for compilation and further steps. To 
reduce such costs, the tester can select either ran-the tester can select either ran-can select either ran-
dom mutants or the best mutation operators (se-
lective mutation).

Regarding random selection, research has shown 
that a 100 percent mutation score for 10 percent of 
the mutants is nearly adequate for a full mutation 
analysis.8–11 However, such selection requires gen-
erating, compiling, and linking all the mutants.

Researchers have concentrated on selective 

mutation, which consists of generating mutants 
using only a reduced subset of mutation opera-
tors. The criterion for selecting the operators 
lies in the “goodness” of the mutants generated.  
Elfurjani S. Mresa and Leonardo �ottaci con-�ottaci con-
ducted an empirical study to determine the best 
operators and when it’s preferable to use random 
selection.6 They observed, for example, that SVR 
(scalar variable replacement), ASR (array refer-
ence for scalar variable replacement), and CSR 
(constant for scalar variable replacement) opera-alar variable replacement) opera-opera-
tors generate the most mutants (confi rming a pre- generate the most mutants (confirming a pre-
vious analysis12) and that these operators perhaps 
shouldn’t be included in a selective set. Mresa and 
�ottaci classify the mutation operators in several 
categories. They reached two main conclusions.

 ■ If the program under test requires a muta-
tion score very close to 100 percent, then ran-
dom selection is more efficient than selective 
mutation.

 ■ If less stringent test coverage is acceptable, 
then selective mutation based on a restricted 
set of efficient operators—AOR (arithmetic 
operator replacement), SAN (statement analy-
sis), SDL (statement deletion), ROR (relational 
operator replacement), and UOI (unary opera-
tion insertion)—is more efficient.

In a previous study, Offutt and his colleagues 
concluded that test sets that are adequate for the 
mutants generated by AOR, ROR, UOI, A�S (ab-AOR, ROR, UOI, A�S (ab-
solute value insertion), and LCR (logical connector 
replacement) achieve a full mutation score of 99 
percent, reducing the number of mutants generated 
by 77 percent.13

The suitability of mutation operators for test-
ing a program might depend on its programming 
language. The selected operators apply to almost 
any programming language; however, they don’t 
consider, for example, the manipulation of point-
ers in languages such as C or C++ or the character-
istics of object orientation, such as inheritance and 
polymorphism. In this respect, James Andrews 
and his colleagues conducted an experiment on 
C programs by applying Offutt’s selected opera-
tors and adding SDL because the subject programs 
“contained a large number of pointer-manipula-
tion and field-assignment statements that would 
not be vulnerable to any of the sufficient mutation 
operators.”14 

Mutation operators try to imitate common 
errors that programmers commit (such as using 
a null pointer or not overriding an inherited op-
eration) and rely on the coupling effect, in which 
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a test data set that detects all simple faults in a 
program is so sensitive that it also detects more 
complex faults.15–16 One criticism of mutation 
testing is the artificial nature of the faults seeded. 
Andrews and his colleagues reached two impor-
tant conclusions. First, using selectively generated 
mutants (from which the equivalent mutants must 
be removed) can indicate a test suite’s fault detec-
tion ability. Second, their experiment “shows the 
danger of using faults selected by humans, since it 
leads to underestimating the fault detection abil-
ity of test suites.” Thus, they also note the con-
venience of automatic mutant generation, which 
provides a well-defined, fault-seeding process 
and the possibilities of replication and criteria 
subsumption.14

In a study regarding sufficient mutation oper-
ators for C, Ellen F. �arbosa and her colleagues 
selected from the mutation operators in the Pro-
teum tool this set of operators: SWDD (while re-
placement by do-while), SMTC (n-trip continue), 
SSDL (statement deletion), OL�N (logical opera-
tor by bitwise operator), OASN (arithmetic op-
erator by shift operator), ORRN (relational op-
erator mutation), VTWD (twiddle mutations), 
VDTR (domain traps), Cccr (constant for con-
stant replacement) and Ccsr (constant for scalar 
replacement).17

In addition, Yu-Seung Ma and her colleagues 
have developed MuJava, a Java mutation testing 
tool that uses mutant schemata generation to di-
rectly manipulate Java bytecode, thus saving time 
in mutant compilation.18 

Test Case Generation 
and Execution
Having a reduced-size test suite is important, es-
pecially for regression testing during software 
maintenance. Mats Grindal and his colleagues 
reviewed strategies for test case generation, each 
with its advantages and drawbacks: Each choice, 
for example, produces small test suites but pro-
vides low coverage. All combinations provides 
the highest coverage but produces the largest test 
suites. Moreover, many of those cases are redun-
dant, because they don’t increase the coverage 
reached by other test cases in the same suite.7

Regarding test case execution, the most com-
mon way to eliminate the ineffective test cases 
(see the box in Figure 1) is to execute each test 
case only against the mutants that remain alive. 
So, after the execution, the tester obtains a re-
duced test suite that reaches the same mutation 
score as the whole test suite. Consider, for exam-
ple, Table 1, which shows a program with seven 

mutants and a test suite with six test cases. At 
first glance, the complete execution requires 6 × 
7 = 42 executions (setting aside the six executions 
in the original program). If test cases execute only 
against those mutants that remain alive, then 
the number of executions might decrease signifi-
cantly: tc1 kills m1 and m2, which are removed 
from the mutant suite (there are seven executions 
at this point). Then, tc2 executes against m3 to 
m7 (five executions), and m3 is removed from 
the mutant suite because it’s killed. Then, tc3 ex-
ecutes on m4 to m7, removing m4, m5, and m6 
from the mutant set. In this example, tc4 and tc5 
execute with no positive results against the only 
live mutant (m7). Finally, one more execution of 
tc6 kills m7. In this way, only 19 test case execu-
tions are required instead of 42, and the test suite 
can be reduced to four test cases.

Another possibility is reducing the suite after 
all test cases execute. Although the problem of 
minimizing a test suite (the “optimal test-suite 
reduction problem”) has been shown to be NP-
hard19 (and thus has no solution in polynomial 
time), several approaches present greedy algo-
rithms for its solution (along with several au-
thors, Neelam Gupta has worked intensively 
in this area20). These approaches require com-
plete execution of all test cases against all the 
mutants: in Table 1, tc1 and tc6 reach the same 
mutation score as the complete test suite. If the 
test case selection occurs during mutant execu-
tion (as in the example given in the previous 
paragraph, where four test cases were selected), 
the reduced suite can be farther from the min-
imum size obtained by a greedy algorithm (as 
in this example, where only two test cases are 
selected). Since testing is often programmed as 

Table 1
A killing matrix for a supposed program

Each X represents that the tci test case has killed the mj mutant

Mutant tc1 tc2 tc3 tc4 tc5 tc6

m1 X X

m2 X X X

m3 X X

m4 X X

m5 X X

m6 X X

m7 X
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unattended, nightly batch processes, the com-
plete execution and further application of a 
greedy algorithm is a good choice for approach-
ing the optimal reduced suites, which can be an 
important benefit in regression testing.

Another promising approach in test case ex-
ecution is weak mutation, 21–23 which requires 
the continuous observation of the mutant being 
executed to check its intermediate state changes 
with respect to the original program. Classic mu-
tation (also called strong mutation) considers a 
test case that kills a mutant when the test case 
output differs after executing it on the original 
and the mutant. More formally, this requires 
three conditions: reachability (the mutated state-
ment must be reached), necessity (once the state-
ment has been reached, the test case must cause 
an erroneous state on the mutant), and suffi-
ciency (the erroneous state must be propagated 
to the output). Weak mutation only requires the 
two first conditions to detect the change intro-
duced in the mutant, considering it’s killed just 
when the different state is detected.

Result Analysis 
The most important obstacle in this third step is 
the presence of equivalent mutants. Phyllis Frankl 
and her colleagues discuss the almost prohibitive 
cost of detecting equivalent mutants.24 �ernhard 
Grün and his colleagues report of a duration of 
15 minutes to assess the equivalence of a single 
mutation.25

From a formal point-of-view, the problem 
with detecting all equivalent mutants is undecid-
able, although in practice you can detect some by 
annotating the program under test with restric-
tions26 and program slicing.27 However, the in-
dustry doesn’t usually apply these techniques, so 
they aren’t easily adaptable to common software 
development practice. 

Many selective-mutation concepts aim to re-
duce the number of equivalent mutants, which 
implies a considerable reduction during result 
analysis. From the automatable-techniques per-
spective, a recent paper discusses perhaps the 
most significant results and relies on n-order mu-
tation.28 An n-order mutant contains n faults 
instead of 1 and proceeds from a previous gen-
eration’s combination of mutants. Thus, two 
first-order mutants (each with a fault) are com-
bined into a second-order mutant with two faults, 
which might in turn be combined with another 
first-order mutant to obtain a third-order mutant.

The paper describes three algorithms for pro-
ducing second-order mutants from first-order 

mutants and shows meaningful cost reductions 
in mutation testing, especially during result anal-
ysis. At first glance, the number of second-order 
mutants corresponding to a set of first-order 
mutants is one-half (although seach algorithm 
produces different quantities of second-order 
mutants). In general, there will be 1/n n-order 
mutants. The number of test case executions also 
decreases (against 1/n instead of against n mu-
tants). Perhaps more important, the percentage 
of equivalent mutants significantly decreases be-
cause with about 20 percent of fi rst-order equiva-first-order equiva--order equiva-
lent mutants, the probability of combining two 
equivalent mutants to produce a new one de-
creases to 4 percent. Obviously, the counterpart 
is the possibility of killing all the n-order mutants 
with test cases that only discover one of the n 
seeded faults. The authors of the paper include an 
experimental study with benchmark programs 
and some pieces of industrial software, conclud-
ing that, as long as the tester is aware of this risk, 
even sixth-order mutation can be effective.28

A n industrially applicable mutation-test-
ing tool should have these requirements:

 ■ Users should be able to generate mutants with 
a selective set of generally applicable mutation 
operators, most likely AOR, ROR, UOI, A�S, 
and LCR. Additionally, and for specific lan-
guages or environments, the tool should con-
sider including other concrete operators.

 ■ Users should be able to select a random set of 
mutants.

 ■ Also depending on the specific environment, 
the tool should allow mutation at compiled-
code level (bytecode for Java, Microsoft Inter-
mediate Language for .NET, and so on).

 ■ In test execution, the tool should support 
both executing test cases on only the mutants 
remaining alive and, regarding batch, unat-
tended testing cycles, selecting a reduced test 
suite with, for example, a greedy algorithm.

 ■ The tool should support instrumentation of 
both the original program and the mutants to 
keep a log of the execution. Changes in a log 
would highlight a behavior difference, mean-
ing that the corresponding mutant has been 
killed, and making this technique a type of 
weak mutation.

 ■ To reduce result analysis costs, the tool should 
allow n-order mutation, which is easily auto-
matable and transferable to industry.

Combining  
these 

techniques 
means a cost 
savings that 

could surpass 
75 percent  

of the original 
costs.
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Data from some experiments shows that a 
mean of 18.66 percent of the mutants generated 
are equivalent.28 Taking the triangle-type prob-
lem as a possible baseline (a small program which 
many researchers have used for testing experi-
ments), the MuJava tool generated 309 mutants 
(70 of them equivalent, 22.65 percent):

 ■ Applying selective mutation could reduce the 
number of mutants by three-fourths—78 mu-
tants. As we’ve discussed, there’s significant 
confidence that a test suite killing these 78 
mutants would also kill the original 309.

 ■ Supposing a uniform distribution of equiva-
lent mutants per operator (which actually 
isn’t true, because each operator has a differ-
ent proneness to produce this kind of noise), 
the process would generate 16 equivalent 
mutants.

 ■ Combining the 78 selected mutants with a 
good combination algorithm (DifferentOper-
ators is the best of the three presented) would 
produce between 50 and 55 percent second-
order mutants (39 to 43), with about 5 per-
cent (2) of equivalent mutants.

Combining these techniques means a cost sav-
ings that could surpass 75 percent of the origi-
nal costs (important savings, for example, for the 
case of Grün, who reported 40 percent of equiv-
alent mutants in an industrial project25). Addi-
tionally, this type of tool could even reduce the 
cost of test case execution via code instrumen-
tation for supporting weak mutation (because 
it wouldn’t require executing each test case un-
til its termination). Currently, we’re developing  
�acterio, a tool with many of these characteris-
tics. To view �acterio, along with the experimen-
tal material cited in this section, visit http://alar-
cos.esi.uclm.es/testing.
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